skip to main content


Search for: All records

Creators/Authors contains: "Hui, Chung-Yuen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Energy dissipation around a propagating crack is the primary mechanism for the enhanced fracture toughness in viscoelastic solids. Such dissipation is spatially non-uniform and is highly coupled to the crack propagation process due to the history-dependent nature of viscoelasticity. We present an experimental approach to map the dissipation field during crack propagation in soft viscoelastic solid. Specifically, we track randomly distributed tracer particles to measure the evolving deformation field. The measured deformation field is then put into a nonlinear constitutive model to determine the dissipation field. Our methodology was used to investigate the deformation and dissipation fields around a propagating crack in a Polyampholyte (PA) hydrogel. The deformation field measurements allowed us to assess whether the commonly assumed translational invariance in viscoelastic fracture theories holds true in practical experiments. Furthermore, by combining the obtained deformation fields with a nonlinear viscoelastic model, we captured the complete history of the dissipation field during crack propagation. We found that dissipation occurred even at material points that are a few millimeters away from the crack tip. The mapped dissipation field also enabled the separate determination of the intrinsic and dissipative components of fracture toughness for the viscoelastic hydrogel. 
    more » « less
    Free, publicly-accessible full text available May 1, 2025
  2. The Pure Shear (PS) crack specimen is widely employed to assess the fracture toughness of soft elastic materials. It serves as a valuable tool for investigating the behavior of crack growth in a steady-state manner following crack initiation. One of its advantages lies in the fact that the energy release rate (J) remains approximately constant for sufficiently long cracks, independent of crack length. Additionally, the PS specimen facilitates the easy evaluation of J for long cracks by means of a tension test conducted on an uncracked sample. However, the lack of a published expression for short cracks currently restricts the usefulness of this specimen. To overcome this limitation, we conducted a series of finite element (FE) simulations utilizing three different constitutive models, namely the neo-Hookean (NH), Arruda-Boyce (AB), and Mooney-Rivlin (MR) models. Our finite element analysis (FEA) encompassed practical crack lengths and strain levels. The results revealed that under a fixed applied displacement, the energy release rate (J) monotonically increases with the crack length for short cracks, reaches a steady-state value when the crack length exceeds the height of the specimen, and subsequently decreases as the crack approaches the end of the specimen. Drawing from these findings, we propose a simple closed-form expression for J that can be applied to most hyper-elastic models and is suitable for all practical crack lengths, particularly short cracks. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  3. An experimental and theoretical study of delayed fracture of polydimethlsiloxane (PDMS) is presented. Previous works have demonstrated that delayed fracture in single edge notch specimens is caused by time dependent damage due to chain scission. Here we study the interactions between damage and the elastic field using different specimens and crack geometries with blunt and sharp cracks. Our experiments show that initial toughness is not well defined, as stable slow crack growth can occur over a range of applied loads. Our experiments demonstrate that there is a universal relation between crack growth rate and applied energy release rate. A model coupling the nonlinear elastic deformation and rate dependent bond scission is proposed and is in good agreement with experimental data. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  4. Free, publicly-accessible full text available October 14, 2024
  5. Free, publicly-accessible full text available August 1, 2024
  6. Free, publicly-accessible full text available June 13, 2024